AMSER Case of the Month
June 2019

65-year-old man with worsening dyspnea on exertion

Phuong Duong, MS3, Columbia University Vagelos College of Physicians and Surgeons
Dr. Pallavi Utukuri MD, New York Presbytarian Hospital
Patient Presentation

• 65-year-old man with transthyretin amyloid cardiomyopathy was transferred to the cardiac care unit from an outside hospital with 3 weeks of worsening dyspnea on exertion and orthopnea

• Past medical history:
 • Transthyretin amyloid cardiomyopathy (2018)
 • Interstitial lung disease per outside hospital records

• Social history: denies tobacco/alcohol/drugs

• Family history: son and brother with cardiomyopathies
Pertinent Labs

- **PE:** Neck – JVP to ear; Cardiac – irregularly irregular rhythm, distant heart sounds; Lungs – wheezes on inspiration and expiration; Extremities – warm, 2+ pulses, 1+ edema
- **Vitals:** T 36.0 °C HR 87 /min BP 84/70 mmHg RR 25/min Oxygen Sat 99%
- **Labs:**
 - WBC 13.10
 - BNP 3,500 (baseline 700)
 - Troponin 0.2

• **Transthoracic Echo:**
 - LVEF: 10-15%
 - Dilated four chambers
 - Moderate to severe mitral regurgitation, posteriorly directed eccentric jet
 - Mild aortic, tricuspid and pulmonic regurgitation

What Imaging Should We Order?
ACR Appropriateness Criteria for Dyspnea with Suspected Cardiac Origin

Variant 2:

Dyspnea due to suspected nonischemic heart failure. Ischemia excluded.

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray chest</td>
<td>9</td>
<td></td>
<td>☬</td>
</tr>
<tr>
<td>US echocardiography transthoracic resting</td>
<td>9</td>
<td></td>
<td>☬</td>
</tr>
<tr>
<td>MRI heart function and morphology without and with IV contrast</td>
<td>9</td>
<td></td>
<td>☬</td>
</tr>
<tr>
<td>MRI heart function and morphology without IV contrast</td>
<td>8</td>
<td></td>
<td>☬</td>
</tr>
<tr>
<td>US echocardiography transesophageal</td>
<td>5</td>
<td></td>
<td>☬</td>
</tr>
<tr>
<td>CT heart function and morphology with IV contrast</td>
<td>5</td>
<td></td>
<td>☬ ☬ ☬ ☬ ☬</td>
</tr>
<tr>
<td>US echocardiography transthoracic stress</td>
<td>3</td>
<td></td>
<td>☬</td>
</tr>
<tr>
<td>Tc-99m SPECT MPI rest and stress</td>
<td>3</td>
<td></td>
<td>☬ ☬ ☬ ☬</td>
</tr>
<tr>
<td>Rb-82 PET heart stress</td>
<td>3</td>
<td></td>
<td>☬ ☬ ☬</td>
</tr>
<tr>
<td>MRI heart with function and inotropic stress without and with IV contrast</td>
<td>3</td>
<td></td>
<td>☬</td>
</tr>
</tbody>
</table>

This imaging modality was ordered by the physician
Findings (unlabeled)
Findings (labeled)

Bilateral bronchioloalveolar opacification

Pulmonary venous cephalization (Stag’s antler sign)

Moderate cardiomegaly

Trace pleural effusion
Findings (unlabeled)
Findings (labeled)

- Ground-glass opacity in right upper lobe
Final Diagnosis:

Unilateral pulmonary edema secondary to mitral regurgitation

Repeat CT following diuresis 2 weeks later
Differential Diagnoses:

- Infectious process
 - Organizing pneumonia
- Chronic interstitial diseases
 - UIP (usual interstitial pneumonia)
 - NSIP (nonspecific interstitial pneumonia)
 - Sarcoidosis
- Acute alveolar diseases
 - Pulmonary edema
 - Hypersensitivity pneumonitis
 - ARDS
Unilateral Pulmonary Edema (UPE)

- Cardiogenic pulmonary edema on chest radiograph:
 - Up to 20% of patients may have normal CXR
 - Mild pulmonary vascular redistribution
 - Bilateral perihilar alveolar edema
 - Cardiomegaly and bilateral interstitial markings in severe cases

- In 2% of cases, unilateral pulmonary edema is present and is caused by eccentric mitral regurgitation (MR)
 - Predilection for the right upper lobe
 - Related to lateralized direction of MR: posterior leaflet prolapse is more likely to be associated with right-sided UPE
 - Associated with delay in initiation of appropriate treatment
 - Independent increased risk of mortality
Pathophysiology of UPE

• The anatomy of the pulmonary veins in relation to the mitral valve may explain the predilection for the right upper lobe
 • Eccentric regurgitant jet (often posteriorly)

• Positioning of the patient

• Left-sided cardiac enlargement can physically impede blood flow in left pulmonary artery

• Differences in lymphatic draining capacity of the right and left lung

Image credit: Myrianthefs et al 2011
References:

