REVIEWING AN EDUCATION PAPER: DIFFERENT AND CRITICAL ELEMENTS

Aine Marie Kelly
Department of Radiology
Division of Cardiothoracic Radiology
University of Michigan
Educational Literature

- Medical Education a rapidly growing field of research
- Educational research often criticized for poor theoretical frameworks, study designs and meaningful outcomes
- Deficiencies in research methods and reporting quality identified
- People from many fields of interest publish in education

Education Literature Review

- Peer review lies at the core of academic literature
- Main mechanism journals use to ensure quality
- Guidelines in literature for reporting RCT, prospective studies, diagnostic accuracy and meta analyses but none for medical education research
- Educational research criticized for not informing practice
 - Simulation, web based learning
- Lack of scientific approach
 - Results of one study a foundation for the next

Medical Education Research Manuscript Review

- Problem Statement
- Relevance
- Research Design
- Sample and sampling
- Instrumentation and data collection
- Results
- Discussion and Conclusion
- Title
- Abstract
- Writing, presentation

Bordage G. Reasons reviewers accept and reject manuscripts. Academic Medicine 2001;76(9):889-96
Top Reasons to Reject Medical Education Research Manuscripts

- Statistics (inappropriate, incomplete, insufficiently described)
- Over-interpretation of results
- Instrument (inappropriate, suboptimal, insufficiently described)
- Sample too small or biased
- Text too difficult to follow or understand
- Insufficient or incomplete problem statement
- Inaccurate or inconsistent data reported
- Review of literature (inadequate, incomplete, inaccurate, outdated)
- Insufficient data presented
- Defective tables or figures

Bordage G. Reasons reviewers accept and reject manuscripts. Academic Medicine 2001;76(9):889-96
Top Reasons to Accept Medical Education Research Manuscripts

- Problem (important, timely, relevant, critical)
- Well written manuscript
- Well designed study
- Review of literature (thoughtful, focused, up to date)
- Sample size sufficiently large
- Practical useful implications
- Interpretation took into account the limitations of the study
- Problem well stated and formulated
- Novel, unique approach to data analysis

Bordage G. Reasons reviewers accept and reject manuscripts. Academic Medicine 2001;76(9):889-96
Types of Medical Education Research Projects

- Descriptive (observational) “what was done?”
 - New educational intervention, assessment
 - No comparisons, no outcomes

- Clarification (Model formation, building theory, prediction) “how does this work and why?”
 - Build on previous work, confirm or refute

- Justification (Testing) “does it work?”
 - Compare PBL to traditional learning

Problem Statement / Research question / Relevance

- Should be clearly stated
- Title clear / matches project
- Abstract concise and accurate
 - Is it an important problem or question?
 - Is it a novel teaching method or approach?
 - Does it advance the field of education?
 - Is the project do-able given the resources?

Research Design, Sample and Sampling

- **Experimental**
 - Randomized allocation
 - Pre test post test control group
 - Post test only control group
 - Solomon four group design

- **Quasi-experimental**
 - Non equivalent control group design
 - Separate sample pre test post test design

- **Time series designs**
 - One group only post test design
 - One group pre test post test design
 - Static group comparison design

Study Design

R O₁ X O₂ (pre and post test)

- R = residents
- O₁ = first assessment (dependent variable)
- X = intervention (independent variable)
- O₂ = second assessment (dependent variable)

Experimental Design

- Pre test post test control group
 \[\text{R} \quad \text{O}_1 \quad \text{X} \quad \text{O}_2 \]
 \[\text{R} \quad \text{O}_1 \quad \text{O}_2 \]

- Post test control group
 \[\text{R} \quad \text{X} \quad \text{O}_1 \]
 \[\text{R} \quad \text{O}_1 \quad \text{O}_1 \]

- Solomon four group design
 \[\text{R} \quad \text{O}_1 \quad \text{X} \quad \text{O}_2 \]
 \[\text{R} \quad \text{O}_1 \quad \text{O}_2 \]
 \[\text{R} \quad \text{X} \quad \text{O}_1 \]
 \[\text{R} \quad \text{O}_1 \quad \text{O}_1 \]

Quasi-Experimental Design

- Non equivalent control group

 \[R \quad O_1 \quad X \quad O_2\]

 \[R \quad O_1 \quad O_2\]

- Separate sample pre test post test design

 \[R \quad O_1 \quad X\]

 \[R \quad X \quad O_1\]

- Separate sample pre test post test design

 \[R \quad O_1 \quad X\]

 \[R \quad X \quad O_1\]

 \[R \quad O_1\]

 \[R \quad O_1\]

Pre-Experimental Design

- One group only pre test post test design
 \[R \quad O_1 \quad X \quad O_2 \]
- One group only post test design
 \[R \quad X \quad O_1 \]
 \[R \quad O_1 \]
- Static group comparison design
 \[R \quad X \quad O_1 \]
 \[R \quad O_1 \]

Outcome Measures, Results

- Use existing proxy measures (such as board exams), or create a new measure
- Affect – student and patient satisfaction
- Behavior – did program improve practical skills, communication skills, competency rates etc
- Cognition – knowledge on GPA or aptitude tests, final exam scores, degree of transfer of theory into clinical practice (OSCE), patient education etc
- Attitudes – life long learning, staying up to date
- Higher order skills – non interpretative skills, clinical decision making etc

Qualitative Research

- To investigate complex social processes that are difficult to measure quantitatively
- To capture essential aspects of a phenomenon from the perspective of study participants
- To uncover beliefs, values and motivations that underlie individual health behaviors
- To develop sound quantitative measurement processes or instruments or to study special populations

Curry LA. Qualitative and mixed methods provide unique contributions to outcomes research. Circ 2009;119(10):1442-52.
Qualitative Research: Data Collection

- **In depth interviews**
 - 1 to 1 interaction between researcher and study participant
 - Explore individual experiences and perceptions in great detail
 - In person, over the phone, or online
 - Respondent directs the course of conversation
 - Discussion guides (data collection instruments) can be broad or deep

- **Focus groups**
 - Guided discussions, in small groups with a common characteristic
 - Group interaction can generate unique insights into understanding shared experiences
 - Facilitate discussion of sensitive topics among members
 - In person, over the phone, and online
 - Discussion guides with 5 to 10 open ended questions

- **Observation**

- **Document review**

 Curry LA. Qualitative and mixed methods provide unique contributions to outcomes research. Circ 2009;119(10):1442-52.
Instrumentation and Data Collection

- Educational instrument
 - New teaching method versus traditional - PBL, computer web based training, simulation, interactive teaching files
- Assessment – formative, summative
- Feedback – yes, no
- Quantitative data
 - Satisfaction levels (Likert scale - ordinal)
 - Practical skills attained (yes, no)
 - Competent (passed certifying exam – yes/no)
 - Pre and post test scores (numeric)
- Qualitative data – main themes that emerge
Statistical Analysis

- Sample sizes <30, >100, parametric or not
- Survey participation rates
- Satisfaction levels (Likert scale - ordinal)
 - Wilcoxon or T-test
- Practical skills attained (yes, no), Competent (passed certifying exam – yes/no)
 - Chi squared test or Fisher exact test
- Pre and post test scores (numeric, grades - ordinal)
 - T-test (paired or non paired)
Discussion and Conclusion

- Participation rates
- Interpretation of the results
- Compare the current findings to prior work and see if there is agreement or not, and if not, why not?
- Limitations
- Implications for educational practice
- Future directions

Questions? Comments?
REVIEWING AN EDUCATION PAPER: DIFFERENT AND CRITICAL ELEMENTS

Aine Marie Kelly
Department of Radiology
Division of Cardiothoracic Radiology
University of Michigan