Performance Outcome Measures in Medical Student Radiology Education

Christian W. Cox, MD
Cardiothoracic Radiologist
Assistant Professor
National Jewish Health
University of Colorado School of Medicine
Rocky Vista University College of Osteopathic Medicine
Financial Disclosures:
None
I believe:

• Radiology is a fundamental component of any medical education – and –

• Needs to be vertically integrated into the 4 year curriculum – and –

• Needs to be a required clerkship in the third year (in some form).
Goals

• Examine current practice in Radiology Medical Student Education
• Review recommended models for performance assessment
• Discuss some techniques to improve outcome measures
The Traditional Radiology Rotation

- Observational Rotation
- Assigned Textbook
- Regular Didactics
- Final Exam
- +/- Presentation or Write-up
Great Advances in MS Radiology Education:

National Ultrasound Curriculum for Medical Students

Oksana H. Baltarowich, MD, * Donald N. Di Salvo, MD, † Leslie M. Scoutt, MD, ‡ Douglas L. Brown, MD, §
Christian W. Cox, MD, ||| Michael A. DiPietro, MD, ¶# Daniel I. Glazer, MD, #
Ulrike M. Hamper, MD, MBA, ** Maria A. Manning, MD, †† Levon N. Nazarian, MD, *‡‡
Janet A. Neutze, MD, §§ Miriam Romero, MD, |||| Jason W. Stephenson, MD, ¶¶
and Theodore J. Dubinsky, MD##
My Experience

• Limited correlation with performance on radiology related tasks
• Limited identification of students talented in radiology
• Limited inspiration for students to pursue radiology as a field
Alternative?
Modified Bloom’s Taxonomy:

- Remember
- Understanding
- Apply
- Analyze
- Evaluate
- Create
Levels of Skills Performance (Dreyfus):

- Novice
- Advanced Beginner
- Competent
- Proficient
- Expert
- Master
7 Principles of Clinical Skills Education
Modified from AAMC Skills Taskforce

• Improve patient outcomes
• Patient-centered care strategy
• Interactive, experience-based and learner centered
• Competency is dependent on self-directed habit
• Developmental in nature
• Medical schools responsible for skills teaching and assessment
• Continuous Quality Improvement part of design
Assessment Techniques:

- Written Test
- Supervising Clinicians
- Direct Observation/Video
- Clinical Simulation
- Multisource Assessment
- Portfolios
From AAMC skills taskforce:

<table>
<thead>
<tr>
<th>Knows</th>
<th>Knows How</th>
<th>Shows How</th>
<th>Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple choice exam</td>
<td>Oral exam</td>
<td>Standardized patient examination;</td>
<td>Direct observation and/or videotaped performance with actual or</td>
</tr>
<tr>
<td></td>
<td>Written Essay</td>
<td>Objective structured clinical examination (OSCE);</td>
<td>simulated patients;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulation with model</td>
<td>Portfolios with reflection, 360 evaluation with patient, peers,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>medical record review.</td>
</tr>
</tbody>
</table>
“Remember when they were in reach, and all the teachers used to teach, you can anything if you put your mind to it.”

-Passenger, **Staring at the Stars**
Complete Change of Curriculum Design

- General Radiology Knowledge
- Imaging Selection
- Image Acquisition
- Image Interpretation
Development of a Radiology Education Lab

Critical Components:
- HD/Modifiable Images
- Organization/PACS
- Small Group Learning
- Access to Modalities - Ultrasound
- Video/Audio Transmitting/Recording
- Continuous Feedback
Methods - Audience Response

- Daily Pre- and Post-day tests
- MCQ covering 4 pillars
- Immediate Feedback
- Participation only grade
- Weekly Performance Report
Methods - Workshops

• ACR Appropriateness Criteria
 – Twice weekly
 – Scenarios (AMSER Resources)
 – Write-ups

• Ultrasound
 – Weekly
 – Ultrasound Quarterly
 – Transducer time on a real machine with a sonographer
 – Students as subjects
Methods- Video Testing

Design:

• Daily presentation sessions
• Weekly Tests
• Image Interpretation
• CXR’s only
• New Cases of practiced diagnoses
• Grading Rubric
The Rubric -
Essential to Performance Assessment
“A standard of performance for a defined population”
- The National Science Education Standards (1996)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Start (sec)</th>
<th>Study type</th>
<th>Indication</th>
<th>Comparison</th>
<th>Technique</th>
<th>Findings</th>
<th>Impression</th>
<th>Disposition</th>
<th>Total</th>
<th>Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 SD</td>
</tr>
<tr>
<td>Completeness</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Accuracy</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>15</td>
<td>15</td>
<td>8</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Misdiagnosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-25</td>
</tr>
</tbody>
</table>
Feedback

<table>
<thead>
<tr>
<th>Week 1 Performance Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Case</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Notes: ARS 108
Summary

• For true performance assessment, traditional model is likely inadequate
• Significant literature supports more advanced performance instruction and metrics
• Tools such as ARS, Video Testing and Hands-on Workshops are potential teaching and testing methods for performance measures and assessment
Image References:

- Slide 4- tweakyourbiz.com
- Slide 5- s622.photobucket.com
- Slide 7- socialanxietyinstitute.org
- Slide 9- articles.chicagotribune.com
- Slide 14- cordellfelix.blogspot.com
- Slide 17- www.motherearthnews.com
Thank you!

Questions?